The XM1203 Non-Line-of-Sight Cannon (NLOS Cannon) was a mobile 155 mm cannon intended to provide improved responsiveness and lethality to the "unit of action" (UA) commander as part of the US Army's Future Combat Systems project. This self-propelled armored artillery piece provides networked, extended-range targeting, and precision attack of point and area targets in support of other combat units with a suite of munitions that include special purpose capabilities. The Non-Line-of-Sight Cannon provides sustained fire for close support and destructive fire for tactical standoff engagement. The NLOS Cannon uses technology from the canceled XM2001 Crusader.
NLOS-C was a proposed system in development to be part of the FCS environment and funded by the U.S. Congress shortly after cancellation of the XM2001 Crusader M109 replacement. It is an 18-ton class vehicle that would have been a replacement for current vehicle systems in the 40-60 ton weight class. It would provide a level of air transportability that current M109 systems cannot at present match.
The system's primary purpose is to provide responsive fire in support of the FCS Combined Arms Battalions (CABs), and their subordinate units in concert with line-of-sight, Beyond-Line-of-Sight (BLOS), Non-Line-of-Sight (NLOS), external and Joint capabilities.
The system as proposed looks to add capabilities that the current M109 systems do not offer. One of the proposed systems advantages is the ability to switch shell types quickly on a one by one basis allowing an illumination round to be followed by a point detonation round, to be followed by an area effect round. This would give the system the ability to fire different rounds as required by different fire calls or to change types of shells. For instance, destroying a building then engaging anyone fleeing the area with the next round.
The rate of fire in the proposed system would enable more rounds sent downrange in a given amount of time allowing more fire power per system than is available with the current M109 system. Another capability offered by the NLOS Cannon is the Multiple Rounds Simultaneous Impact mission or MRSI (pronounced mercy) mission. A MRSI mission is where the cannon fires several rounds at different trajectories allowing the rounds to impact on the same target at the same time, resulting in little or no reaction time for the enemy to adjust its position. This is accomplished by including the autoloader from the canceled Crusader project which achieves the goals of a much improved fire rate with a reduction in required crew.
The proposed system is envisioned as part of a fast mobile force networked via improved communications and data capabilities to allow rapid response with enhanced accuracy with the view to reducing friendly fire incidents along with lessened collateral damage, while providing superior protective artillery fire to units requiring gunfire support. Navigation of the vehicle and targeting information are provided via GPS and networked information systems.
Improvements in the refueling arrangements and automation of ammunition reloading allow reduced downtime for logistic functions that would otherwise leave the system unavailable for combat support operations. This also allows the system to use a crew of 2 instead of 5. This is desirable as staffing continues to be a major contributor to life cycle cost of any combat system.
The main chassis of the NLOS-C was based on the Manned Ground Vehicle (MGV) platform being developed for all manned ground platform.
This is such good work. Great photos, and a nice .pdf. Thanks for sharing.
ReplyDelete@epiphanius
ReplyDeletethanks friend,,hope I can make better..
keep up the great work. cant wait to see your next project. thanks for sharing with everyone!
ReplyDeletethank you all for the comments
ReplyDeletePlease set a pdf for instructions also. The images for nsloc are blurred.
ReplyDelete@Jagmeet Singh
ReplyDeleteplease click the image, it show the real size (2480x3508) ,it's quite clear.If it's not working check your screen setting, many people had complete build this model without having trouble with the instruction.
regards,
Thanks. Found high resolution images by clicking on them.
ReplyDeleteThank you.
ReplyDelete